일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 프로그래머스
- Hadoop
- 아파치 하둡
- Apache Hadoop
- 알고리즘
- 분산
- 이진탐색
- 빅데이터
- programmers
- leetcode
- heapq
- Data Engineering
- Spark
- Apache Spark
- 하둡
- 도커
- 파이썬
- Python
- docker
- 리트코드
- 코딩테스트
- 오블완
- DP
- 티스토리챌린지
- 아파치 스파크
- 분산처리
- 딕셔너리
- 데이터 엔지니어링
- 우선순위큐
- 스파크
- Today
- Total
래원
[LeetCode] 3286. Find a Safe Walk Through a Grid (Python) 본문
[LeetCode] 3286. Find a Safe Walk Through a Grid (Python)
Laewon Jeong 2024. 12. 29. 18:44
난이도: Medium
문제 설명
You are given an m x n binary matrix grid and an integer health.
You start on the upper-left corner (0, 0) and would like to get to the lower-right corner (m - 1, n - 1).
You can move up, down, left, or right from one cell to another adjacent cell as long as your health remains positive.
Cells (i, j) with grid[i][j] = 1 are considered unsafe and reduce your health by 1.
Return true if you can reach the final cell with a health value of 1 or more, and false otherwise.
문제 예제
Example 1:
Input: grid = [[0,1,0,0,0],[0,1,0,1,0],[0,0,0,1,0]], health = 1
Output: true
Explanation:
The final cell can be reached safely by walking along the gray cells below.
Example 2:
Input: grid = [[0,1,1,0,0,0],[1,0,1,0,0,0],[0,1,1,1,0,1],[0,0,1,0,1,0]], health = 3
Output: false
Explanation:
A minimum of 4 health points is needed to reach the final cell safely.
Example 3:
Input: grid = [[1,1,1],[1,0,1],[1,1,1]], health = 5
Output: true
Explanation:
The final cell can be reached safely by walking along the gray cells below.
Any path that does not go through the cell (1, 1) is unsafe since your health will drop to 0 when reaching the final cell.
제한 사항
- m == grid.length
- n == grid[i].length
- 1 <= m, n <= 50
- 2 <= m * n
- 1 <= health <= m + n
- grid[i][j] is either 0 or 1.
✏️ Solution(솔루션)
class Solution:
def findSafeWalk(self, grid: List[List[int]], health: int) -> bool:
start_x, start_y = 0, 0
if grid[start_x][start_y] == 1:
health -= 1
if health == 0:
return False
n = len(grid)
m = len(grid[0])
moves = [[0,1], [1,0], [0,-1], [-1,0]]
visited = defaultdict(bool)
visited[(start_x, start_y)] = True
q = []
heapq.heappush(q, (-health, start_x, start_y))
while q:
h, x, y = heapq.heappop(q)
if x == n-1 and y == m-1:
return True
for move in moves:
nx = x + move[0]
ny = y + move[1]
if 0 <= nx < n and 0 <= ny < m and not visited[(nx, ny)]:
visited[(nx, ny)] = True
if grid[nx][ny] == 1:
if -h > 1:
heapq.heappush(q, (h+1, nx, ny))
else:
visited[(nx, ny)] = False
else:
heapq.heappush(q, (h, nx, ny))
return False
단순히 BFS로 푸는 것이 아닌 health를 관리하면서 경로를 찾는 것이 빡센던 것 같다.
deque를 사용하여 popleft()를 통해 일반적인 BFS를 돌렸을 때, 몇몇 테스트 케이스에서 실패하는 것을 확인했다.
visited에 영향이 있는 것 같았다. 이 문제는 최단 경로를 찾는 것이 아니기 때문에 health 큰 경로 부터 확인 하면 될 것 같았다.
그래서 deque를 쓰는 것이 아닌 heapq를 사용했고, 이를 통해 높은 health를 가진 경로를 먼저 탐색할 수 있었고 문제를 해결할 수 있었다.
'알고리즘 > LeetCode' 카테고리의 다른 글
[LeetCode] 983. Minimum Cost For Tickets (Python) (0) | 2024.12.31 |
---|---|
[LeetCode] 2466. Count Ways To Build Good Strings (Python) (0) | 2024.12.30 |
[LeetCode] 1122. Relative Sort Array (Python) (1) | 2024.12.28 |
[LeetCode] 1014. Best Sightseeing Pair (Python) (2) | 2024.12.27 |
[LeetCode] 494. Target Sum (Python) (0) | 2024.12.26 |